Step 1 :
After factoring out $ 2y^{2} $ we have:
$$ 32y^{4}-50y^{2} = 2y^{2} ( 16y^{2}-25 ) $$Step 2 :
Rewrite $ 16y^{2}-25 $ as:
$$ 16y^{2}-25 = (4y)^2 - (5)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 4y $ and $ II = 5 $ , we have:
$$ 16y^{2}-25 = (4y)^2 - (5)^2 = ( 4y-5 ) ( 4y+5 ) $$