Step 1 :
After factoring out $ 2x $ we have:
$$ 30x^{3}-22x^{2}-28x = 2x ( 15x^{2}-11x-14 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 15 }$ by the constant term $\color{blue}{c = -14} $.
$$ a \cdot c = -210 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -210 $ and add to $ b = -11 $.
Step 5: All pairs of numbers with a product of $ -210 $ are:
PRODUCT = -210 | |
-1 210 | 1 -210 |
-2 105 | 2 -105 |
-3 70 | 3 -70 |
-5 42 | 5 -42 |
-6 35 | 6 -35 |
-7 30 | 7 -30 |
-10 21 | 10 -21 |
-14 15 | 14 -15 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -11 }$
PRODUCT = -210 and SUM = -11 | |
-1 210 | 1 -210 |
-2 105 | 2 -105 |
-3 70 | 3 -70 |
-5 42 | 5 -42 |
-6 35 | 6 -35 |
-7 30 | 7 -30 |
-10 21 | 10 -21 |
-14 15 | 14 -15 |
Step 7: Replace middle term $ -11 x $ with $ 10x-21x $:
$$ 15x^{2}-11x-14 = 15x^{2}+10x-21x-14 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 15x^{2}+10x-21x-14 = 5x\left(3x+2\right) -7\left(3x+2\right) = \left(5x-7\right) \left(3x+2\right) $$