Step 1 :
After factoring out $ 3 $ we have:
$$ 30k^{2}-171k+162 = 3 ( 10k^{2}-57k+54 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 10 }$ by the constant term $\color{blue}{c = 54} $.
$$ a \cdot c = 540 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 540 $ and add to $ b = -57 $.
Step 5: All pairs of numbers with a product of $ 540 $ are:
PRODUCT = 540 | |
1 540 | -1 -540 |
2 270 | -2 -270 |
3 180 | -3 -180 |
4 135 | -4 -135 |
5 108 | -5 -108 |
6 90 | -6 -90 |
9 60 | -9 -60 |
10 54 | -10 -54 |
12 45 | -12 -45 |
15 36 | -15 -36 |
18 30 | -18 -30 |
20 27 | -20 -27 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -57 }$
PRODUCT = 540 and SUM = -57 | |
1 540 | -1 -540 |
2 270 | -2 -270 |
3 180 | -3 -180 |
4 135 | -4 -135 |
5 108 | -5 -108 |
6 90 | -6 -90 |
9 60 | -9 -60 |
10 54 | -10 -54 |
12 45 | -12 -45 |
15 36 | -15 -36 |
18 30 | -18 -30 |
20 27 | -20 -27 |
Step 7: Replace middle term $ -57 x $ with $ -12x-45x $:
$$ 10x^{2}-57x+54 = 10x^{2}-12x-45x+54 $$Step 8: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -9 $ out of the last two terms.
$$ 10x^{2}-12x-45x+54 = 2x\left(5x-6\right) -9\left(5x-6\right) = \left(2x-9\right) \left(5x-6\right) $$