Step 1 :
After factoring out $ 2x^{2} $ we have:
$$ 2x^{4}-34x^{3}+140x^{2} = 2x^{2} ( x^{2}-17x+70 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -17 } ~ \text{ and } ~ \color{red}{ c = 70 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -17 } $ and multiply to $ \color{red}{ 70 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 70 }$.
PRODUCT = 70 | |
1 70 | -1 -70 |
2 35 | -2 -35 |
5 14 | -5 -14 |
7 10 | -7 -10 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -17 }$
PRODUCT = 70 and SUM = -17 | |
1 70 | -1 -70 |
2 35 | -2 -35 |
5 14 | -5 -14 |
7 10 | -7 -10 |
Step 5: Put -7 and -10 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-17x+70 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-17x+70 & = (x -7)(x -10) \end{aligned} $$