Step 1 :
After factoring out $ 2 $ we have:
$$ 2x^{3}-686 = 2 ( x^{3}-343 ) $$Step 2 :
To factor $ x^{3}-343 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = x $ and $ II = 7 $ , we have:
$$ x^{3}-343 = ( x-7 ) ( x^{2}+7x+49 ) $$Step 3 :
Step 3: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 7 } ~ \text{ and } ~ \color{red}{ c = 49 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 7 } $ and multiply to $ \color{red}{ 49 } $.
Step 4: Find out pairs of numbers with a product of $\color{red}{ c = 49 }$.
PRODUCT = 49 | |
1 49 | -1 -49 |
7 7 | -7 -7 |
Step 5: Because none of these pairs will give us a sum of $ \color{blue}{ 7 }$, we conclude the polynomial cannot be factored.