Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = 81} $.
$$ a \cdot c = 162 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 162 $ and add to $ b = 27 $.
Step 4: All pairs of numbers with a product of $ 162 $ are:
PRODUCT = 162 | |
1 162 | -1 -162 |
2 81 | -2 -81 |
3 54 | -3 -54 |
6 27 | -6 -27 |
9 18 | -9 -18 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 27 }$
PRODUCT = 162 and SUM = 27 | |
1 162 | -1 -162 |
2 81 | -2 -81 |
3 54 | -3 -54 |
6 27 | -6 -27 |
9 18 | -9 -18 |
Step 6: Replace middle term $ 27 x $ with $ 18x+9x $:
$$ 2x^{2}+27x+81 = 2x^{2}+18x+9x+81 $$Step 7: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ 9 $ out of the last two terms.
$$ 2x^{2}+18x+9x+81 = 2x\left(x+9\right) + 9\left(x+9\right) = \left(2x+9\right) \left(x+9\right) $$