Step 1 :
After factoring out $ 2 $ we have:
$$ 2x^{2}+12x+36 = 2 ( x^{2}+6x+18 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 6 } ~ \text{ and } ~ \color{red}{ c = 18 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 6 } $ and multiply to $ \color{red}{ 18 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 18 }$.
PRODUCT = 18 | |
1 18 | -1 -18 |
2 9 | -2 -9 |
3 6 | -3 -6 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 6 }$, we conclude the polynomial cannot be factored.