It seems that $ 2x^{2}-x+9280 $ cannot be factored out.
Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = 9280} $.
$$ a \cdot c = 18560 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 18560 $ and add to $ b = -1 $.
Step 4: All pairs of numbers with a product of $ 18560 $ are:
PRODUCT = 18560 | |
1 18560 | -1 -18560 |
2 9280 | -2 -9280 |
4 4640 | -4 -4640 |
5 3712 | -5 -3712 |
8 2320 | -8 -2320 |
10 1856 | -10 -1856 |
16 1160 | -16 -1160 |
20 928 | -20 -928 |
29 640 | -29 -640 |
32 580 | -32 -580 |
40 464 | -40 -464 |
58 320 | -58 -320 |
64 290 | -64 -290 |
80 232 | -80 -232 |
116 160 | -116 -160 |
128 145 | -128 -145 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -1 }$
Step 6: Because none of these pairs will give us a sum of $ \color{blue}{ -1 }$, we conclude the polynomial cannot be factored.