Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = -63} $.
$$ a \cdot c = -126 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -126 $ and add to $ b = -5 $.
Step 4: All pairs of numbers with a product of $ -126 $ are:
PRODUCT = -126 | |
-1 126 | 1 -126 |
-2 63 | 2 -63 |
-3 42 | 3 -42 |
-6 21 | 6 -21 |
-7 18 | 7 -18 |
-9 14 | 9 -14 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -5 }$
PRODUCT = -126 and SUM = -5 | |
-1 126 | 1 -126 |
-2 63 | 2 -63 |
-3 42 | 3 -42 |
-6 21 | 6 -21 |
-7 18 | 7 -18 |
-9 14 | 9 -14 |
Step 6: Replace middle term $ -5 x $ with $ 9x-14x $:
$$ 2x^{2}-5x-63 = 2x^{2}+9x-14x-63 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 2x^{2}+9x-14x-63 = x\left(2x+9\right) -7\left(2x+9\right) = \left(x-7\right) \left(2x+9\right) $$