Step 1 :
After factoring out $ 2 $ we have:
$$ 2p^{2}-48p-50 = 2 ( p^{2}-24p-25 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -24 } ~ \text{ and } ~ \color{red}{ c = -25 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -24 } $ and multiply to $ \color{red}{ -25 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -25 }$.
PRODUCT = -25 | |
-1 25 | 1 -25 |
-5 5 | 5 -5 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -24 }$
PRODUCT = -25 and SUM = -24 | |
-1 25 | 1 -25 |
-5 5 | 5 -5 |
Step 5: Put 1 and -25 into placeholders to get factored form.
$$ \begin{aligned} p^{2}-24p-25 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ p^{2}-24p-25 & = (x + 1)(x -25) \end{aligned} $$