Step 1 :
After factoring out $ 2 $ we have:
$$ 2b^{2}+18b+40 = 2 ( b^{2}+9b+20 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 9 } ~ \text{ and } ~ \color{red}{ c = 20 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 9 } $ and multiply to $ \color{red}{ 20 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 20 }$.
PRODUCT = 20 | |
1 20 | -1 -20 |
2 10 | -2 -10 |
4 5 | -4 -5 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 9 }$
PRODUCT = 20 and SUM = 9 | |
1 20 | -1 -20 |
2 10 | -2 -10 |
4 5 | -4 -5 |
Step 5: Put 4 and 5 into placeholders to get factored form.
$$ \begin{aligned} b^{2}+9b+20 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ b^{2}+9b+20 & = (x + 4)(x + 5) \end{aligned} $$