Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 28 }$ by the constant term $\color{blue}{c = -15} $.
$$ a \cdot c = -420 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -420 $ and add to $ b = 1 $.
Step 4: All pairs of numbers with a product of $ -420 $ are:
PRODUCT = -420 | |
-1 420 | 1 -420 |
-2 210 | 2 -210 |
-3 140 | 3 -140 |
-4 105 | 4 -105 |
-5 84 | 5 -84 |
-6 70 | 6 -70 |
-7 60 | 7 -60 |
-10 42 | 10 -42 |
-12 35 | 12 -35 |
-14 30 | 14 -30 |
-15 28 | 15 -28 |
-20 21 | 20 -21 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 1 }$
PRODUCT = -420 and SUM = 1 | |
-1 420 | 1 -420 |
-2 210 | 2 -210 |
-3 140 | 3 -140 |
-4 105 | 4 -105 |
-5 84 | 5 -84 |
-6 70 | 6 -70 |
-7 60 | 7 -60 |
-10 42 | 10 -42 |
-12 35 | 12 -35 |
-14 30 | 14 -30 |
-15 28 | 15 -28 |
-20 21 | 20 -21 |
Step 6: Replace middle term $ 1 x $ with $ 21x-20x $:
$$ 28x^{2}+x-15 = 28x^{2}+21x-20x-15 $$Step 7: Apply factoring by grouping. Factor $ 7x $ out of the first two terms and $ -5 $ out of the last two terms.
$$ 28x^{2}+21x-20x-15 = 7x\left(4x+3\right) -5\left(4x+3\right) = \left(7x-5\right) \left(4x+3\right) $$