Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 28 }$ by the constant term $\color{blue}{c = -6} $.
$$ a \cdot c = -168 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -168 $ and add to $ b = 13 $.
Step 4: All pairs of numbers with a product of $ -168 $ are:
PRODUCT = -168 | |
-1 168 | 1 -168 |
-2 84 | 2 -84 |
-3 56 | 3 -56 |
-4 42 | 4 -42 |
-6 28 | 6 -28 |
-7 24 | 7 -24 |
-8 21 | 8 -21 |
-12 14 | 12 -14 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 13 }$
PRODUCT = -168 and SUM = 13 | |
-1 168 | 1 -168 |
-2 84 | 2 -84 |
-3 56 | 3 -56 |
-4 42 | 4 -42 |
-6 28 | 6 -28 |
-7 24 | 7 -24 |
-8 21 | 8 -21 |
-12 14 | 12 -14 |
Step 6: Replace middle term $ 13 x $ with $ 21x-8x $:
$$ 28x^{2}+13x-6 = 28x^{2}+21x-8x-6 $$Step 7: Apply factoring by grouping. Factor $ 7x $ out of the first two terms and $ -2 $ out of the last two terms.
$$ 28x^{2}+21x-8x-6 = 7x\left(4x+3\right) -2\left(4x+3\right) = \left(7x-2\right) \left(4x+3\right) $$