Step 1 :
After factoring out $ 7u $ we have:
$$ 28u^{3}-63u = 7u ( 4u^{2}-9 ) $$Step 2 :
Rewrite $ 4u^{2}-9 $ as:
$$ 4u^{2}-9 = (2u)^2 - (3)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 2u $ and $ II = 3 $ , we have:
$$ 4u^{2}-9 = (2u)^2 - (3)^2 = ( 2u-3 ) ( 2u+3 ) $$