Step 1 :
After factoring out $ 36t^{2} $ we have:
$$ 36t^{4}-144t^{3}+288t^{2} = 36t^{2} ( t^{2}-4t+8 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -4 } ~ \text{ and } ~ \color{red}{ c = 8 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -4 } $ and multiply to $ \color{red}{ 8 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 8 }$.
PRODUCT = 8 | |
1 8 | -1 -8 |
2 4 | -2 -4 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ -4 }$, we conclude the polynomial cannot be factored.