Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 27 }$ by the constant term $\color{blue}{c = 2} $.
$$ a \cdot c = 54 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 54 $ and add to $ b = -21 $.
Step 4: All pairs of numbers with a product of $ 54 $ are:
PRODUCT = 54 | |
1 54 | -1 -54 |
2 27 | -2 -27 |
3 18 | -3 -18 |
6 9 | -6 -9 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -21 }$
PRODUCT = 54 and SUM = -21 | |
1 54 | -1 -54 |
2 27 | -2 -27 |
3 18 | -3 -18 |
6 9 | -6 -9 |
Step 6: Replace middle term $ -21 x $ with $ -3x-18x $:
$$ 27x^{2}-21x+2 = 27x^{2}-3x-18x+2 $$Step 7: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -2 $ out of the last two terms.
$$ 27x^{2}-3x-18x+2 = 3x\left(9x-1\right) -2\left(9x-1\right) = \left(3x-2\right) \left(9x-1\right) $$