Step 1 :
After factoring out $ 3x $ we have:
$$ 27x^{3}-3x = 3x ( 9x^{2}-1 ) $$Step 2 :
Rewrite $ 9x^{2}-1 $ as:
$$ 9x^{2}-1 = (3x)^2 - (1)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 3x $ and $ II = 1 $ , we have:
$$ 9x^{2}-1 = (3x)^2 - (1)^2 = ( 3x-1 ) ( 3x+1 ) $$