Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 25 }$ by the constant term $\color{blue}{c = 561} $.
$$ a \cdot c = 14025 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 14025 $ and add to $ b = -250 $.
Step 4: All pairs of numbers with a product of $ 14025 $ are:
PRODUCT = 14025 | |
1 14025 | -1 -14025 |
3 4675 | -3 -4675 |
5 2805 | -5 -2805 |
11 1275 | -11 -1275 |
15 935 | -15 -935 |
17 825 | -17 -825 |
25 561 | -25 -561 |
33 425 | -33 -425 |
51 275 | -51 -275 |
55 255 | -55 -255 |
75 187 | -75 -187 |
85 165 | -85 -165 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -250 }$
PRODUCT = 14025 and SUM = -250 | |
1 14025 | -1 -14025 |
3 4675 | -3 -4675 |
5 2805 | -5 -2805 |
11 1275 | -11 -1275 |
15 935 | -15 -935 |
17 825 | -17 -825 |
25 561 | -25 -561 |
33 425 | -33 -425 |
51 275 | -51 -275 |
55 255 | -55 -255 |
75 187 | -75 -187 |
85 165 | -85 -165 |
Step 6: Replace middle term $ -250 x $ with $ -85x-165x $:
$$ 25x^{2}-250x+561 = 25x^{2}-85x-165x+561 $$Step 7: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -33 $ out of the last two terms.
$$ 25x^{2}-85x-165x+561 = 5x\left(5x-17\right) -33\left(5x-17\right) = \left(5x-33\right) \left(5x-17\right) $$