Step 1 :
After factoring out $ 5n $ we have:
$$ 25n^{3}+105n^{2}-270n = 5n ( 5n^{2}+21n-54 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 5 }$ by the constant term $\color{blue}{c = -54} $.
$$ a \cdot c = -270 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -270 $ and add to $ b = 21 $.
Step 5: All pairs of numbers with a product of $ -270 $ are:
PRODUCT = -270 | |
-1 270 | 1 -270 |
-2 135 | 2 -135 |
-3 90 | 3 -90 |
-5 54 | 5 -54 |
-6 45 | 6 -45 |
-9 30 | 9 -30 |
-10 27 | 10 -27 |
-15 18 | 15 -18 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 21 }$
PRODUCT = -270 and SUM = 21 | |
-1 270 | 1 -270 |
-2 135 | 2 -135 |
-3 90 | 3 -90 |
-5 54 | 5 -54 |
-6 45 | 6 -45 |
-9 30 | 9 -30 |
-10 27 | 10 -27 |
-15 18 | 15 -18 |
Step 7: Replace middle term $ 21 x $ with $ 30x-9x $:
$$ 5x^{2}+21x-54 = 5x^{2}+30x-9x-54 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -9 $ out of the last two terms.
$$ 5x^{2}+30x-9x-54 = 5x\left(x+6\right) -9\left(x+6\right) = \left(5x-9\right) \left(x+6\right) $$