Rewrite $ -t^{10}+25 $ as:
$$ -t^{10}+25 = 25 -x^10 = (5)^2 - (t^{5})^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 5 $ and $ II = t^{5} $ , we have:
$$ -t^{10}+25 = (5)^2 - (t^{5})^2 = ( -t^{5}+5 ) ( t^{5}+5 ) $$