Step 1 :
After factoring out $ 2 $ we have:
$$ 24x^{2}+16x-78 = 2 ( 12x^{2}+8x-39 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 12 }$ by the constant term $\color{blue}{c = -39} $.
$$ a \cdot c = -468 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -468 $ and add to $ b = 8 $.
Step 5: All pairs of numbers with a product of $ -468 $ are:
PRODUCT = -468 | |
-1 468 | 1 -468 |
-2 234 | 2 -234 |
-3 156 | 3 -156 |
-4 117 | 4 -117 |
-6 78 | 6 -78 |
-9 52 | 9 -52 |
-12 39 | 12 -39 |
-13 36 | 13 -36 |
-18 26 | 18 -26 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 8 }$
PRODUCT = -468 and SUM = 8 | |
-1 468 | 1 -468 |
-2 234 | 2 -234 |
-3 156 | 3 -156 |
-4 117 | 4 -117 |
-6 78 | 6 -78 |
-9 52 | 9 -52 |
-12 39 | 12 -39 |
-13 36 | 13 -36 |
-18 26 | 18 -26 |
Step 7: Replace middle term $ 8 x $ with $ 26x-18x $:
$$ 12x^{2}+8x-39 = 12x^{2}+26x-18x-39 $$Step 8: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -3 $ out of the last two terms.
$$ 12x^{2}+26x-18x-39 = 2x\left(6x+13\right) -3\left(6x+13\right) = \left(2x-3\right) \left(6x+13\right) $$