To factor $ 24n^{3}+9n^{2}+56n+21 $ we can use factoring by grouping:
Group $ \color{blue}{ 24x^{3} }$ with $ \color{blue}{ 9x^{2} }$ and $ \color{red}{ 56x }$ with $ \color{red}{ 21 }$ then factor each group.
$$ \begin{aligned} 24n^{3}+9n^{2}+56n+21 = ( \color{blue}{ 24x^{3}+9x^{2} } ) + ( \color{red}{ 56x+21 }) &= \\ &= \color{blue}{ 3x^{2}( 8x+3 )} + \color{red}{ 7( 8x+3 ) } = \\ &= (3x^{2}+7)(8x+3) \end{aligned} $$