Step 1 :
After factoring out $ 3 $ we have:
$$ 3x^{2}-60x+225 = 3 ( x^{2}-20x+75 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -20 } ~ \text{ and } ~ \color{red}{ c = 75 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -20 } $ and multiply to $ \color{red}{ 75 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 75 }$.
PRODUCT = 75 | |
1 75 | -1 -75 |
3 25 | -3 -25 |
5 15 | -5 -15 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -20 }$
PRODUCT = 75 and SUM = -20 | |
1 75 | -1 -75 |
3 25 | -3 -25 |
5 15 | -5 -15 |
Step 5: Put -5 and -15 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-20x+75 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-20x+75 & = (x -5)(x -15) \end{aligned} $$