Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 20 }$ by the constant term $\color{blue}{c = 7} $.
$$ a \cdot c = 140 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 140 $ and add to $ b = -72 $.
Step 4: All pairs of numbers with a product of $ 140 $ are:
PRODUCT = 140 | |
1 140 | -1 -140 |
2 70 | -2 -70 |
4 35 | -4 -35 |
5 28 | -5 -28 |
7 20 | -7 -20 |
10 14 | -10 -14 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -72 }$
PRODUCT = 140 and SUM = -72 | |
1 140 | -1 -140 |
2 70 | -2 -70 |
4 35 | -4 -35 |
5 28 | -5 -28 |
7 20 | -7 -20 |
10 14 | -10 -14 |
Step 6: Replace middle term $ -72 x $ with $ -2x-70x $:
$$ 20x^{2}-72x+7 = 20x^{2}-2x-70x+7 $$Step 7: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 20x^{2}-2x-70x+7 = 2x\left(10x-1\right) -7\left(10x-1\right) = \left(2x-7\right) \left(10x-1\right) $$