Rewrite $ 196x^4-9y^18 $ as:
$$ \color{blue}{ 196x^4-9y^18 = (14x^2)^2 - (3y^9)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 14x^2 $ and $ II = 3y^9 $ , we have:
$$ 196x^4-9y^18 = (14x^2)^2 - (3y^9)^2 = ( 14x^2-3y^9 ) ( 14x^2+3y^9 ) $$