Step 1 :
After factoring out $ 2u^{2} $ we have:
$$ -50u^{4}+18u^{2} = 2u^{2} ( -25u^{2}+9 ) $$Step 2 :
Rewrite $ -25u^{2}+9 $ as:
$$ -25u^{2}+9 = 9 -25x^2 = (3)^2 - (5u)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 3 $ and $ II = 5u $ , we have:
$$ -25u^{2}+9 = (3)^2 - (5u)^2 = ( -5u+3 ) ( 5u+3 ) $$