Step 1 :
Factor out common factor $ \color{blue}{ 2 } $:
$$ 18a^2-200b^2x^2 = 2 ( 9a^2-100b^2x^2 ) $$Step 2 :
Rewrite $ 9a^2-100b^2x^2 $ as:
$$ \color{blue}{ 9a^2-100b^2x^2 = (3a)^2 - (10bx)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 3a $ and $ II = 10bx $ , we have:
$$ 9a^2-100b^2x^2 = (3a)^2 - (10bx)^2 = ( 3a-10bx ) ( 3a+10bx ) $$