Rewrite $ 16m^6-n^6 $ as:
$$ \color{blue}{ 16m^6-n^6 = (4m^3)^2 - (n^3)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 4m^3 $ and $ II = n^3 $ , we have:
$$ 16m^6-n^6 = (4m^3)^2 - (n^3)^2 = ( 4m^3-n^3 ) ( 4m^3+n^3 ) $$