Step 1 :
After factoring out $ 6 $ we have:
$$ 168x^{3}+24x^{2}-126x-18 = 6 ( 28x^{3}+4x^{2}-21x-3 ) $$Step 2 :
To factor $ 28x^{3}+4x^{2}-21x-3 $ we can use factoring by grouping:
Group $ \color{blue}{ 28x^{3} }$ with $ \color{blue}{ 4x^{2} }$ and $ \color{red}{ -21x }$ with $ \color{red}{ -3 }$ then factor each group.
$$ \begin{aligned} 28x^{3}+4x^{2}-21x-3 = ( \color{blue}{ 28x^{3}+4x^{2} } ) + ( \color{red}{ -21x-3 }) &= \\ &= \color{blue}{ 4x^{2}( 7x+1 )} + \color{red}{ -3( 7x+1 ) } = \\ &= (4x^{2}-3)(7x+1) \end{aligned} $$