Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 15 }$ by the constant term $\color{blue}{c = 12} $.
$$ a \cdot c = 180 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 180 $ and add to $ b = 29 $.
Step 4: All pairs of numbers with a product of $ 180 $ are:
PRODUCT = 180 | |
1 180 | -1 -180 |
2 90 | -2 -90 |
3 60 | -3 -60 |
4 45 | -4 -45 |
5 36 | -5 -36 |
6 30 | -6 -30 |
9 20 | -9 -20 |
10 18 | -10 -18 |
12 15 | -12 -15 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 29 }$
PRODUCT = 180 and SUM = 29 | |
1 180 | -1 -180 |
2 90 | -2 -90 |
3 60 | -3 -60 |
4 45 | -4 -45 |
5 36 | -5 -36 |
6 30 | -6 -30 |
9 20 | -9 -20 |
10 18 | -10 -18 |
12 15 | -12 -15 |
Step 6: Replace middle term $ 29 x $ with $ 20x+9x $:
$$ 15x^{2}+29x+12 = 15x^{2}+20x+9x+12 $$Step 7: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ 3 $ out of the last two terms.
$$ 15x^{2}+20x+9x+12 = 5x\left(3x+4\right) + 3\left(3x+4\right) = \left(5x+3\right) \left(3x+4\right) $$