Step 1 :
Factor out common factor $ \color{blue}{ 15 } $:
$$ 15x^2-30xy+15y^2 = 15 ( x^2-2xy+y^2 ) $$Step 2 :
Note that the polynomial $ x^2-2xy+y^2 $ is a perfect square trinomial, so we will use the following formula.
$$ A^2 - 2AB + B^2 = (A - B)^2 $$In this example we have $ \color{blue}{ A = x } $ and $ \color{red}{ B = y } $ so,
$$ x^2-2xy+y^2 = ( \color{blue}{ x } - \color{red}{ y } )^2 $$