Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 15 }$ by the constant term $\color{blue}{c = -16} $.
$$ a \cdot c = -240 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -240 $ and add to $ b = 8 $.
Step 4: All pairs of numbers with a product of $ -240 $ are:
PRODUCT = -240 | |
-1 240 | 1 -240 |
-2 120 | 2 -120 |
-3 80 | 3 -80 |
-4 60 | 4 -60 |
-5 48 | 5 -48 |
-6 40 | 6 -40 |
-8 30 | 8 -30 |
-10 24 | 10 -24 |
-12 20 | 12 -20 |
-15 16 | 15 -16 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 8 }$
PRODUCT = -240 and SUM = 8 | |
-1 240 | 1 -240 |
-2 120 | 2 -120 |
-3 80 | 3 -80 |
-4 60 | 4 -60 |
-5 48 | 5 -48 |
-6 40 | 6 -40 |
-8 30 | 8 -30 |
-10 24 | 10 -24 |
-12 20 | 12 -20 |
-15 16 | 15 -16 |
Step 6: Replace middle term $ 8 x $ with $ 20x-12x $:
$$ 15x^{2}+8x-16 = 15x^{2}+20x-12x-16 $$Step 7: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 15x^{2}+20x-12x-16 = 5x\left(3x+4\right) -4\left(3x+4\right) = \left(5x-4\right) \left(3x+4\right) $$