Step 1 :
After factoring out $ 6 $ we have:
$$ 150k^{2}-216 = 6 ( 25k^{2}-36 ) $$Step 2 :
Rewrite $ 25k^{2}-36 $ as:
$$ 25k^{2}-36 = (5k)^2 - (6)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 5k $ and $ II = 6 $ , we have:
$$ 25k^{2}-36 = (5k)^2 - (6)^2 = ( 5k-6 ) ( 5k+6 ) $$