Step 1 :
After factoring out $ 2 $ we have:
$$ 14v^{2}+92v+48 = 2 ( 7v^{2}+46v+24 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 7 }$ by the constant term $\color{blue}{c = 24} $.
$$ a \cdot c = 168 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 168 $ and add to $ b = 46 $.
Step 5: All pairs of numbers with a product of $ 168 $ are:
PRODUCT = 168 | |
1 168 | -1 -168 |
2 84 | -2 -84 |
3 56 | -3 -56 |
4 42 | -4 -42 |
6 28 | -6 -28 |
7 24 | -7 -24 |
8 21 | -8 -21 |
12 14 | -12 -14 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 46 }$
PRODUCT = 168 and SUM = 46 | |
1 168 | -1 -168 |
2 84 | -2 -84 |
3 56 | -3 -56 |
4 42 | -4 -42 |
6 28 | -6 -28 |
7 24 | -7 -24 |
8 21 | -8 -21 |
12 14 | -12 -14 |
Step 7: Replace middle term $ 46 x $ with $ 42x+4x $:
$$ 7x^{2}+46x+24 = 7x^{2}+42x+4x+24 $$Step 8: Apply factoring by grouping. Factor $ 7x $ out of the first two terms and $ 4 $ out of the last two terms.
$$ 7x^{2}+42x+4x+24 = 7x\left(x+6\right) + 4\left(x+6\right) = \left(7x+4\right) \left(x+6\right) $$