Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 14 }$ by the constant term $\color{blue}{c = -9} $.
$$ a \cdot c = -126 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -126 $ and add to $ b = 15 $.
Step 4: All pairs of numbers with a product of $ -126 $ are:
PRODUCT = -126 | |
-1 126 | 1 -126 |
-2 63 | 2 -63 |
-3 42 | 3 -42 |
-6 21 | 6 -21 |
-7 18 | 7 -18 |
-9 14 | 9 -14 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 15 }$
PRODUCT = -126 and SUM = 15 | |
-1 126 | 1 -126 |
-2 63 | 2 -63 |
-3 42 | 3 -42 |
-6 21 | 6 -21 |
-7 18 | 7 -18 |
-9 14 | 9 -14 |
Step 6: Replace middle term $ 15 x $ with $ 21x-6x $:
$$ 14x^{2}+15x-9 = 14x^{2}+21x-6x-9 $$Step 7: Apply factoring by grouping. Factor $ 7x $ out of the first two terms and $ -3 $ out of the last two terms.
$$ 14x^{2}+21x-6x-9 = 7x\left(2x+3\right) -3\left(2x+3\right) = \left(7x-3\right) \left(2x+3\right) $$