Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 12 }$ by the constant term $\color{blue}{c = 25} $.
$$ a \cdot c = 300 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 300 $ and add to $ b = 35 $.
Step 4: All pairs of numbers with a product of $ 300 $ are:
PRODUCT = 300 | |
1 300 | -1 -300 |
2 150 | -2 -150 |
3 100 | -3 -100 |
4 75 | -4 -75 |
5 60 | -5 -60 |
6 50 | -6 -50 |
10 30 | -10 -30 |
12 25 | -12 -25 |
15 20 | -15 -20 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 35 }$
PRODUCT = 300 and SUM = 35 | |
1 300 | -1 -300 |
2 150 | -2 -150 |
3 100 | -3 -100 |
4 75 | -4 -75 |
5 60 | -5 -60 |
6 50 | -6 -50 |
10 30 | -10 -30 |
12 25 | -12 -25 |
15 20 | -15 -20 |
Step 6: Replace middle term $ 35 x $ with $ 20x+15x $:
$$ 12x^{2}+35x+25 = 12x^{2}+20x+15x+25 $$Step 7: Apply factoring by grouping. Factor $ 4x $ out of the first two terms and $ 5 $ out of the last two terms.
$$ 12x^{2}+20x+15x+25 = 4x\left(3x+5\right) + 5\left(3x+5\right) = \left(4x+5\right) \left(3x+5\right) $$