Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 12 }$ by the constant term $\color{blue}{c = -15} $.
$$ a \cdot c = -180 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -180 $ and add to $ b = -8 $.
Step 4: All pairs of numbers with a product of $ -180 $ are:
PRODUCT = -180 | |
-1 180 | 1 -180 |
-2 90 | 2 -90 |
-3 60 | 3 -60 |
-4 45 | 4 -45 |
-5 36 | 5 -36 |
-6 30 | 6 -30 |
-9 20 | 9 -20 |
-10 18 | 10 -18 |
-12 15 | 12 -15 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -8 }$
PRODUCT = -180 and SUM = -8 | |
-1 180 | 1 -180 |
-2 90 | 2 -90 |
-3 60 | 3 -60 |
-4 45 | 4 -45 |
-5 36 | 5 -36 |
-6 30 | 6 -30 |
-9 20 | 9 -20 |
-10 18 | 10 -18 |
-12 15 | 12 -15 |
Step 6: Replace middle term $ -8 x $ with $ 10x-18x $:
$$ 12x^{2}-8x-15 = 12x^{2}+10x-18x-15 $$Step 7: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -3 $ out of the last two terms.
$$ 12x^{2}+10x-18x-15 = 2x\left(6x+5\right) -3\left(6x+5\right) = \left(2x-3\right) \left(6x+5\right) $$