Step 1 :
After factoring out $ 6 $ we have:
$$ 12x^{2}-6x-168 = 6 ( 2x^{2}-x-28 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = -28} $.
$$ a \cdot c = -56 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -56 $ and add to $ b = -1 $.
Step 5: All pairs of numbers with a product of $ -56 $ are:
PRODUCT = -56 | |
-1 56 | 1 -56 |
-2 28 | 2 -28 |
-4 14 | 4 -14 |
-7 8 | 7 -8 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -1 }$
PRODUCT = -56 and SUM = -1 | |
-1 56 | 1 -56 |
-2 28 | 2 -28 |
-4 14 | 4 -14 |
-7 8 | 7 -8 |
Step 7: Replace middle term $ -1 x $ with $ 7x-8x $:
$$ 2x^{2}-x-28 = 2x^{2}+7x-8x-28 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 2x^{2}+7x-8x-28 = x\left(2x+7\right) -4\left(2x+7\right) = \left(x-4\right) \left(2x+7\right) $$