Step 1 :
After factoring out $ 2 $ we have:
$$ 12x^{2}-14x-6 = 2 ( 6x^{2}-7x-3 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 6 }$ by the constant term $\color{blue}{c = -3} $.
$$ a \cdot c = -18 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -18 $ and add to $ b = -7 $.
Step 5: All pairs of numbers with a product of $ -18 $ are:
PRODUCT = -18 | |
-1 18 | 1 -18 |
-2 9 | 2 -9 |
-3 6 | 3 -6 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -7 }$
PRODUCT = -18 and SUM = -7 | |
-1 18 | 1 -18 |
-2 9 | 2 -9 |
-3 6 | 3 -6 |
Step 7: Replace middle term $ -7 x $ with $ 2x-9x $:
$$ 6x^{2}-7x-3 = 6x^{2}+2x-9x-3 $$Step 8: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -3 $ out of the last two terms.
$$ 6x^{2}+2x-9x-3 = 2x\left(3x+1\right) -3\left(3x+1\right) = \left(2x-3\right) \left(3x+1\right) $$