Note that the polynomial $ 121a^2-66ab+9b^2 $ is a perfect square trinomial, so we will use the following formula.
$$ A^2 - 2AB + B^2 = (A - B)^2 $$In this example we have $ \color{blue}{ A = 11a } $ and $ \color{red}{ B = 3b } $ so,
$$ 121a^2-66ab+9b^2 = ( \color{blue}{ 11a } - \color{red}{ 3b } )^2 $$