Step 1 :
After factoring out $ y $ we have:
$$ 10y^{3}+31y^{2}+15y = y ( 10y^{2}+31y+15 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 10 }$ by the constant term $\color{blue}{c = 15} $.
$$ a \cdot c = 150 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 150 $ and add to $ b = 31 $.
Step 5: All pairs of numbers with a product of $ 150 $ are:
PRODUCT = 150 | |
1 150 | -1 -150 |
2 75 | -2 -75 |
3 50 | -3 -50 |
5 30 | -5 -30 |
6 25 | -6 -25 |
10 15 | -10 -15 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 31 }$
PRODUCT = 150 and SUM = 31 | |
1 150 | -1 -150 |
2 75 | -2 -75 |
3 50 | -3 -50 |
5 30 | -5 -30 |
6 25 | -6 -25 |
10 15 | -10 -15 |
Step 7: Replace middle term $ 31 x $ with $ 25x+6x $:
$$ 10x^{2}+31x+15 = 10x^{2}+25x+6x+15 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ 3 $ out of the last two terms.
$$ 10x^{2}+25x+6x+15 = 5x\left(2x+5\right) + 3\left(2x+5\right) = \left(5x+3\right) \left(2x+5\right) $$