Step 1 :
After factoring out $ 2 $ we have:
$$ 10x^{2}-54x-112 = 2 ( 5x^{2}-27x-56 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 5 }$ by the constant term $\color{blue}{c = -56} $.
$$ a \cdot c = -280 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -280 $ and add to $ b = -27 $.
Step 5: All pairs of numbers with a product of $ -280 $ are:
PRODUCT = -280 | |
-1 280 | 1 -280 |
-2 140 | 2 -140 |
-4 70 | 4 -70 |
-5 56 | 5 -56 |
-7 40 | 7 -40 |
-8 35 | 8 -35 |
-10 28 | 10 -28 |
-14 20 | 14 -20 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -27 }$
PRODUCT = -280 and SUM = -27 | |
-1 280 | 1 -280 |
-2 140 | 2 -140 |
-4 70 | 4 -70 |
-5 56 | 5 -56 |
-7 40 | 7 -40 |
-8 35 | 8 -35 |
-10 28 | 10 -28 |
-14 20 | 14 -20 |
Step 7: Replace middle term $ -27 x $ with $ 8x-35x $:
$$ 5x^{2}-27x-56 = 5x^{2}+8x-35x-56 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 5x^{2}+8x-35x-56 = x\left(5x+8\right) -7\left(5x+8\right) = \left(x-7\right) \left(5x+8\right) $$