Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 10 }$ by the constant term $\color{blue}{c = 56} $.
$$ a \cdot c = 560 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 560 $ and add to $ b = -51 $.
Step 4: All pairs of numbers with a product of $ 560 $ are:
PRODUCT = 560 | |
1 560 | -1 -560 |
2 280 | -2 -280 |
4 140 | -4 -140 |
5 112 | -5 -112 |
7 80 | -7 -80 |
8 70 | -8 -70 |
10 56 | -10 -56 |
14 40 | -14 -40 |
16 35 | -16 -35 |
20 28 | -20 -28 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -51 }$
PRODUCT = 560 and SUM = -51 | |
1 560 | -1 -560 |
2 280 | -2 -280 |
4 140 | -4 -140 |
5 112 | -5 -112 |
7 80 | -7 -80 |
8 70 | -8 -70 |
10 56 | -10 -56 |
14 40 | -14 -40 |
16 35 | -16 -35 |
20 28 | -20 -28 |
Step 6: Replace middle term $ -51 x $ with $ -16x-35x $:
$$ 10x^{2}-51x+56 = 10x^{2}-16x-35x+56 $$Step 7: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 10x^{2}-16x-35x+56 = 2x\left(5x-8\right) -7\left(5x-8\right) = \left(2x-7\right) \left(5x-8\right) $$