Rewrite $ 1-x^2y^4 $ as:
$$ \color{blue}{ 1-x^2y^4 = (1)^2 - (xy^2)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 1 $ and $ II = xy^2 $ , we have:
$$ 1-x^2y^4 = (1)^2 - (xy^2)^2 = ( 1-xy^2 ) ( 1+xy^2 ) $$