Step 1 :
After factoring out $ -1 $ we have:
$$ -x^{3}+x^{2}-6x+6 = - ~ ( x^{3}-x^{2}+6x-6 ) $$Step 2 :
To factor $ x^{3}-x^{2}+6x-6 $ we can use factoring by grouping:
Group $ \color{blue}{ x^{3} }$ with $ \color{blue}{ -x^{2} }$ and $ \color{red}{ 6x }$ with $ \color{red}{ -6 }$ then factor each group.
$$ \begin{aligned} x^{3}-x^{2}+6x-6 = ( \color{blue}{ x^{3}-x^{2} } ) + ( \color{red}{ 6x-6 }) &= \\ &= \color{blue}{ x^{2}( x-1 )} + \color{red}{ 6( x-1 ) } = \\ &= (x^{2}+6)(x-1) \end{aligned} $$