It seems that $ -x^{2}+60x+500 $ cannot be factored out.
Step 1 :
After factoring out $ -1 $ we have:
$$ -x^{2}+60x+500 = - ~ ( x^{2}-60x-500 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -60 } ~ \text{ and } ~ \color{red}{ c = -500 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -60 } $ and multiply to $ \color{red}{ -500 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -500 }$.
PRODUCT = -500 | |
-1 500 | 1 -500 |
-2 250 | 2 -250 |
-4 125 | 4 -125 |
-5 100 | 5 -100 |
-10 50 | 10 -50 |
-20 25 | 20 -25 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ -60 }$, we conclude the polynomial cannot be factored.