Step 1 :
After factoring out $ -1 $ we have:
$$ -x^{2}+20x-91 = - ~ ( x^{2}-20x+91 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -20 } ~ \text{ and } ~ \color{red}{ c = 91 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -20 } $ and multiply to $ \color{red}{ 91 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 91 }$.
PRODUCT = 91 | |
1 91 | -1 -91 |
7 13 | -7 -13 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -20 }$
PRODUCT = 91 and SUM = -20 | |
1 91 | -1 -91 |
7 13 | -7 -13 |
Step 5: Put -7 and -13 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-20x+91 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-20x+91 & = (x -7)(x -13) \end{aligned} $$