Step 1 :
After factoring out $ -1 $ we have:
$$ -7a^{2}+186a+81 = - ~ ( 7a^{2}-186a-81 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 7 }$ by the constant term $\color{blue}{c = -81} $.
$$ a \cdot c = -567 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -567 $ and add to $ b = -186 $.
Step 5: All pairs of numbers with a product of $ -567 $ are:
PRODUCT = -567 | |
-1 567 | 1 -567 |
-3 189 | 3 -189 |
-7 81 | 7 -81 |
-9 63 | 9 -63 |
-21 27 | 21 -27 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -186 }$
PRODUCT = -567 and SUM = -186 | |
-1 567 | 1 -567 |
-3 189 | 3 -189 |
-7 81 | 7 -81 |
-9 63 | 9 -63 |
-21 27 | 21 -27 |
Step 7: Replace middle term $ -186 x $ with $ 3x-189x $:
$$ 7x^{2}-186x-81 = 7x^{2}+3x-189x-81 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -27 $ out of the last two terms.
$$ 7x^{2}+3x-189x-81 = x\left(7x+3\right) -27\left(7x+3\right) = \left(x-27\right) \left(7x+3\right) $$