Step 1 :
After factoring out $ -5 $ we have:
$$ -5x^{2}+45x-90 = -5 ( x^{2}-9x+18 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -9 } ~ \text{ and } ~ \color{red}{ c = 18 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -9 } $ and multiply to $ \color{red}{ 18 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 18 }$.
PRODUCT = 18 | |
1 18 | -1 -18 |
2 9 | -2 -9 |
3 6 | -3 -6 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -9 }$
PRODUCT = 18 and SUM = -9 | |
1 18 | -1 -18 |
2 9 | -2 -9 |
3 6 | -3 -6 |
Step 5: Put -3 and -6 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-9x+18 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-9x+18 & = (x -3)(x -6) \end{aligned} $$