Step 1 :
After factoring out $ -8z $ we have:
$$ -56z^{3}+32z^{2}+48z = -8z ( 7z^{2}-4z-6 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 7 }$ by the constant term $\color{blue}{c = -6} $.
$$ a \cdot c = -42 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -42 $ and add to $ b = -4 $.
Step 5: All pairs of numbers with a product of $ -42 $ are:
PRODUCT = -42 | |
-1 42 | 1 -42 |
-2 21 | 2 -21 |
-3 14 | 3 -14 |
-6 7 | 6 -7 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -4 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ -4 }$, we conclude the polynomial cannot be factored.